Изолированные переломы диафиза локтевой кости  
Изолированные переломы диафиза локтевой кости
Читать далее
 
Переломы шейки и вертлужного участка бедренной кости  
Переломы шейки и вертлужного участка бедренной кости
Читать далее
 
   
Главная  /  Переломы  /  Репаративная регенерация костной ткани

Репаративная регенерация костной ткани

Изучение процессов репаративной регенерации

Успех лечения переломов костей зависит от понимания процесса сращения их (репаративной регенерации). Еще с древности человечество стремилось понять этот процесс и вело поиски методов управления репаративной регенерацией, то есть сращивания костей. Неопределенные представления гуморальной теории (Гиппократ) подкрепляет целлюлярная теория (Вирхов).

Исследуются конкретные клеточные и тканевые изменения в зоне повреждения кости, изучается значение различных клеточных и тканевых элементов, материального восстановленного субстрата (регенерата) костной ткани. Освещается роль в процессе сращения перелома надкостницы, костного мозга, эндоста, прилегающей соединительной ткани, сосудов, нервной и эндокринной систем.

Следствием проведенных кропотливых аналитических исследований была разработана концепция – в образовании регенерата кости участвуют все клеточные элементы мезенхимального происхождения, степень участия которых напрямую зависит от пластических возможностей различных клеток и условий.

Происходит изучение репаративной регенерации и в синтетическом направлении, т.е. раскрывают зависимость ее от условий кровоснабжения, состояния нервной и эндокринной систем, гомеостаза организма.

Изучают динамику биохимических процессов при сращивании костей в общем состоянии пострадавшего и на месте срастания, обмен микроэлементов, особенно кальция, фосфора, изменения кислотно-основного состояния, фосфатаз и др. Было обосновано значение стабильного сопоставления отломков на весь период сращения и роль ранней функции.

В последние десятилетия XX в. изучение процессов репаративной регенерации шло на уровне молекулярной биологии, электронной микроскопии. Проведенные исследования прояснили ход биологических реакций во времени и пространстве. Многолетние всесторонние исследования показали, что течение репаративной регенерации и формирования регенерата имеет стадийный характер и напрямую зависит от общего состояния организма и местных изменений тканевого метаболизма.

Этапы

Выделяют три типа репаративной регенерации:

  • десмогенный;
  • хондрогенный;
  • ангиогенный.

Для них характерна стадийность течения.

Катаболизм и дедифференциация клеточных элементов

Первая стадия репаративной регенерации. Она начинается с момента травмы.

Вследствие воздействия механической травмирующей силы возникает перелом кости. При переломе повреждается не только костная ткань, но и прилегающие мягкие ткани, сосуды, нервные ветви, возникает кровоизлияние (гематома).

Тяжесть травмы зависит от силы и времени действия травмирующего фактора.

Гематома уже в первые минуты наполняется кусочками прилегающих мягких тканей, надкостницы, костного мозга, эндоста, различными клетками и составными элементами, долями ядерной оболочки, ядерного и плазматического содержимого ДНК, ядерными фракциями РНК, лизосомными ферментами, составляющими ферментами крови и другими биологическими веществами.

Зону «эпицентра» повреждения окружает слой мягких тканей, клетки которого находятся в состоянии парабиоза. Судьба паранекротичиного слоя зависит от степени тяжести паранекротичного процесса и времени восстановления микроциркулярного русла. Под паранекротичним прослойкой расположены мягкие ткани с неповрежденными сосудами, нервами и нормальным обменом веществ.

Травма в организме вызывает общие и местные защитные, адаптационные специфические и неспецифические нервно-рефлекторных и гуморальные реакции. В самом очаге перелома, в гематоме, которая становится по сути гетерогенной массой вследствие наполнения кусочками различных тканей, элементами клеток, клетками крови, возникают активные анаэробные процессы (гликолиз), что приводит к образованию органических кислот (пируватов, лактатов и др.) и нарастание осмотического давления.

Возникает ацидоз, сначала за счет уменьшения содержания резервных щелочей, а позже – вследствие увеличения количества ионов водорода. Нарастает выход лейкоцитов, белков, накапливается значительное количество деградированных кислых муко – и глюкопротеидов, происходит денатурация коллагена, повышает концентрацию ионов водорода.

Денатурация коллагена происходит также под действием протеаз (трипсина, фибринолизина, химотрипсина, катапсина и др.). Нарушается обмен воды в тканях, клетки теряют калий, развивается гиперкалиемия в очаге повреждения. Выраженный сосудистый застой, выпадает фибрин, которому ошибочно приписывается способность превращаться в колагеноподобные волокна и образовывать кость.

Уже доказано, что коллагеновые волокна в организме образуются только путем синтеза клеток соединительной ткани. В зоне повреждения возникает дезинтеграция межклеточной субстанции, нарушаются физико-механические связи с коллагеновыми волокнами, которые демонтируются, распадаются и под действием протеаз деградируют.

В гетерогенной массе (бывший гематоме) возникают различные по своей природе химические соединения полипептидов, олигопептидов, аминокислот, азотовых основ и др., которые вследствие декарбоксидирования образкуют гистамин, брадикинин, серотонин, ацетилхолин – так называемые тканевые гормоны.

При катаболизме усиливается распад белков, жиров, углеводов, активизируется секреция глюкокортикоидов, тироксина, истощаются ресурсы витамина С, нарушается минеральный обмен. Возникает отрицательный азотный баланс за счет сгорания свободных белков в крови уже в первые дни после перелома, оказывается гипокреатинемия, диспротеинемия, нарастает активность трансаминаз.

Страдает энергетический обмен, нарушается ритм биохимических процессов. Количество АТФ – основного энергетического продукта, уменьшается почти в 3 раза. Нарушается обмен кальция и фосфора между костью и плазмой крови, что ведет к значительному выведению кальция и фосфора не только с отломков, но и с сегментов конечности.

В это время на неповрежденные остеогенные и неостеогенные клетки, которые находятся в состоянии интерфазы, действуют раздражители со стороны нервной, гуморальной системы и непосредственно биологически активных веществ, образовавшихся в «гетерогенной» массе вследствие катаболизма. Биологически активные вещества (гормоны) являются не только раздражителями интерорецепторов, но и прямыми химическими индукторами клеток, находящихся в интерфазе.

Таким образом, с одной стороны, «тканевые гормоны» играют важную роль в развитии асептического воспаления и возбуждения процессов пролиферации, а с другой – в дедифференциации остеогенных клеток в полибласты.

Вторая стадия – дифференциации

Течение этой стадии зависит от общих и местных условий, а именно: состояния пострадавшего, возраста, соотношение отломков, своевременного устойчивого их сопоставления, времени восстановления капиллярного кровообращения.

В этой стадии капилляры со всех сторон активно прорастают в направлении концов отломков, обеспечивают в достаточном количестве необходимыми питательными веществами и кислородом полибласты, полибласты дифференцируются в остеобласты, которые в свою очередь производят промежуточную остеоидную ткань.

В таких случаях процесс репаративной регенерации идет по типу прямого остеогенеза. Когда отломки недостаточно устойчиво фиксированные, возможна незначительная подвижность их, происходит травмирование капилляров, которые прорастают, и полибласт не получает необходимое количество кислорода, продуктов питания, он дифференцируется в менее «требовательную» клетку – хондробласт, который имеет низкие энергетические потребности для осуществления своей жизнедеятельности.

Образующиеся хондробласты продуцируют хондроидную промежуточную ткань, которая при благоприятных условиях обладает способностью путем метаплазии превращаться в остеоидную ткань. Это – косвенный путь репаративной регенерации, он значительно больше. Кроме того, при неблагоприятных для метаплазии условиях образуется хрящевая ткань, которая становится препятствием к сращиванию, на месте перелома возникает ложный сустав.

В случаях, когда отломки не сопоставлены или наступило вторичное  смещение их и имеется подвижность отломков, происходит постоянное травмирование капилляров, которые прорастают, полибласт не получает достаточного количества кислорода и необходимых продуктов питания, он дифференцируется в фибробласт с развитием в дальнейшем между отломками волокнистой соединительной ткани. Образовавшаяся волокнистая соединительная ткань в основном превращается в фиброзный рубец. На месте перелома образуется ложный сустав.

Процесс прорастания капилляров с периферии к центру усиливается и по ходу прорастания их заключаются остеобласты. В них нарастает интенсивность метаболических процессов, увеличивается синтез белка, и зона перелома заполняется белково-полисахаридной основой, в которую погружаются фибриллы коллагена и неколагенные белки. С восстановлением капиллярной сети нарастает аэробный процесс, уменьшается количество гистамина, брадикинина, серотонина и др..

Накапливаются биологически активные вещества, уменьшается проницаемость сосудистых стенок, выравнивается осмотическое давление, происходит ощелачивание среды и под действием ферментов, гормонов нарастает минерализация коллагеновых фибрилл.

Образование ангиогенной костной структуры

Репаративный процесс переходит в третью стадию – образование ангиогенной костной структуры.                         

Интенсивный рост капиллярной сетки с периферии к центру от проксимального к дистальному отломку приводит к соединению их в единую сосудистую сетку области перелома. Между петлями этого капиллярного клубка содержатся остеобласты и остеоидная новообразованная ткань.

Образовавшаяся ангиогенная костная структура, достаточно хорошо обеспечена кислородом, необходимыми продуктами питания и имеет постоянную необходимость интенсивного обмена в ней веществ уже в аэробных условиях. Ангиогенная костная структура закрепляет отломки, на которые начинает действовать по оси кости физиологическое давление мышечного тонуса.

Формирование пластинчатой ??костной структуры

Процесс репаративной регенерации переходит в четвертую стадию – формирование пластинчатой ??костной структуры: надкостница, эндоста, кортикального слоя, компактной костной структуры. Течение репаративной регенерации зависит от общего состояния организма пострадавшего и условий в области перелома.

Каковы же общие условия, задерживающие или нарушающие  физиологический процесс репаративной регенерации?

Во-первых, необходимо учесть условия окружающей среды, в котором проживает потерпевший (например, проживание в высокогорных условиях, где низкое парциальное давление кислорода, или в условиях полярной ночи, или в экологически неблагоприятных условиях), а также условия питания пострадавшего (хроническое недоедание, авитаминоз и др.).

Во-вторых, следует учитывать общее состояние пострадавшего: наличие острых или хронических заболеваний, период реконвалесценции, тяжесть травмы или множественная травма, наличие сочетанных или комбинированных травм.

К местным факторам, которые задерживают или нарушают процесс репаративной регенерации, относят степень повреждения прилегающих мягких тканей, сосудов, нервов, неполное, нестабильное сопоставление отломков, вторичное смещение их, необоснованная частая смена методов лечения, нестабильный остеосинтез, раннее статическая и динамическая нагрузка ангиогенной костной мозоли.

Задержание и возбуждение процесса репаративной регенерации в результате действия неблагоприятных общих и местных факторов возможно проследить на каждой стадии. Нарушение гемостаза организма ведет к задержанию процессов катаболизма, пролиферативных и дедиференцийних процессов, прорастание капилляров, в свою очередь приводит к задержанию и нарушению процесса дифференциации остеогенных клеток и образованию остеоидной ткани.

Отсутствие стабильного сопоставления отломков или остеосинтеза приводит к постоянному движению отломков. Отломки своими краями травмируют прорастающие капилляры, и полибласты не получают необходимые для жизнедеятельности продукты, кислород, и они дифференцируются не в остеобласты, а в хондробласты или фибробласты.

Энергетический обмен в хондробласты и фибробластах значительно ниже, чем в остеобластах, и они образуют между отломками хондроидную или рубцовую ткань, которая препятствует сращиванию отломков, и образуется ложный сустав.

Экспериментальные исследования и клинические наблюдения показали, что ранняя чрезмерная статическая и динамическая нагрузка на ангиогенную костную мозоль ведет к травмированию капиллярной сетки, нарушению кровоснабжения остеобластов и в местах концентрации силовых нагрузок возникает ложный сустав.

Таким образом, знание и понимание стадийности процесса репаративной регенерации кости дает ключ к выбору тактики и метода лечения, которые позволяют врачу проводить лечение в наиболее оптимальных для сращивания эволюционно сложившихся условиях.

Согласно с этиологическими факторами, переломы костей разделяют на травматические и патологические, которые могут быть закрытыми или открытыми. Закрытыми принято считать переломы, в которых зона перелома не соединяется с внешней средой, а открытыми – переломы, которые имеют связь с внешней средой, даже если он осуществляется через отверстие величиной с игольное ушко.

Согласно анатомической локализации переломы бывают диафизарные, метафизарные, эпифизарные, среди них выделяют переломы в верхней, средней и нижней трети. Среди эпифизарных и эпиметафизарных переломов выделяют внутрисуставные и внесуставные переломы. В зависимости от направления плоскости перелома выделяют поперечные, поперечно-косые, наклонные, Т - и V -образные и многооскольчатые переломы.

Отдельную группу составляют переломо-вывихи. Наиболее часто они наблюдаются при травмах позвонков, проксимального конца плеча и бедра, на предплечье (повреждение Монтеджа, Галеации), на кисти – повреждение Бонета.

Среди травматических переломов, особенно у детей, когда зоны роста еще не «закрыты», возникают отрывные переломы апофизов: большого и малого вертелов, надмыщелков и т.п..

 
 

Подписка (E-mail)

Рекомендуем

Обсуждения